Меню
Меню

Холестерин его физиологическое значение

Холестерин: биологическая роль, функции и особенности

Вот уже на протяжении долгого времени весь мир активно борется с холестерином, а точнее, с его повышенным содержанием в организме человека и последствиями этого. Ученые из разных стран выдвигают свои мнения и доказательства на этот счет, спорят о своей правоте и приводят аргументы. Чтобы разобраться в пользе и вреде этого вещества для жизнедеятельности человека, необходимо выяснить биологическую роль холестерина. Об особенностях, свойствах, причинах повышения холестерина, а также советах по контролю его содержания в крови вы узнаете из этой статьи.

Строение холестерина, его биологическая роль

В переводе с древнегреческого холестерин дословно означает «твердая желчь». Представляет собой органическое соединение, которое участвует в формировании клеток всех живых организмов, кроме растений, грибов и прокариотов (клеток, которые не имеют ядра).

Биологическую роль холестерина сложно переоценить. В организме человека он выполняет ряд значимых функций, нарушение которых приводит к патологическим изменениям здоровья.

  • Участвует в строении мембран клеток, придавая им упругость и эластичность.
  • Обеспечивает избирательную проницаемость тканей.
  • Принимает участие в синтезе гормонов, таких как эстрогены и кортикоиды.
  • Влияет на выработку витамина D и желчных кислот.

Особенность холестерина заключается в том, что он в чистом виде не растворим в воде. Поэтому для его транспортировки по кровеносной системе используются специальные «транспортные» соединения – липопротеиды.

Синтез и получение извне

Наряду с триглицеридами и фосфолипидами холестерин является одним из трех основных видов жира в организме. Он представляет собой природный липофильный спирт. Около 50% холестерина ежедневно синтезируется в печени человека, 30% его образования приходится на кишечник и почки, оставшиеся 20% поступают извне — с продуктами питания. Выработка этого вещества происходит в результате длительного сложного процесса, в котором можно выделить шесть этапов:

  • Выработка мевалоната. В основе этой реакции лежит расщепление глюкозы до двух молекул, после чего они вступают в реакцию с веществом ацетоацетилтрансфераза. Результатом первого этапа является образование меволаната.
  • Получение изопентенилдифосфата осуществляется путем присоединения трех остатков фосфата к результату предыдущей реакции. Затем происходит декарбоксилиризация и дегидрация.
  • При соединении трех молекул изопентенилдифосфата образуется фарнезилдифосфат.
  • После объединения двух остатков фарнезилдифосфата происходит синтез сквалена.
  • В результате сложного процесса с участием линейного сквалена образуется ланостерол.
  • На завершающем этапе происходит синтез холестерина.

Подтверждает важную биологическую роль холестерина биохимия. Этот процесс четко регулируется человеческим организмом, чтобы не допустить переизбыток или недостаток этого важного вещества. Ферментная система печени способна ускорять или замедлять реакции метаболизма липидов, которые лежат в основе синтеза жирных кислот, фосфолипидов, холестерина и др. Говоря о биологической роли, фунции и обмене холестерина стоит отметить, что около двадцати процентов его общего количества поступают в организм с пищей. В большом количестве он содержится в продуктах животного происхождения. Лидерами являются яичный желток, копченые колбасы, сливочное и топленое масло, гусиная печень, печеночный паштет, почки. Ограничив потребление этих продуктов, можно снизить количество холестерина, получаемого извне.

Химическая структура этого органического соединения в результате метаболизма не может быть расщеплена на СО2 и воду. В связи с этим большая часть холестерина выводится из организма в виде желчных кислот, остальная — с фекалиями и в неизменном виде.

«Хороший» и «плохой» холестерин

Это вещество имеется в большинстве тканей и клеток человеческого организма, что обусловлено биологической ролью холестерина. Он выступает модификатором бислоя клеток, придавая ему жесткость, чем стабилизирует текучесть плазматической мембраны. После синтеза в печени холестерин необходимо доставить в клетки всего организма. Его транспортировка происходит в составе хорошо растворимых комплексных соединений, называемых липопротеидами.

  • Липопротеиды высокой плотности (высокомолекулярные).
  • Липопротеиды низкой плотности (низкомолекулярные).
  • Липопротеиды очень низкой плотности (очень низкомолекулярные).
  • Хиломикроны.

Эти соединения отличатся склонностью выпадения холестерина в осадок. Была установлена зависимость между содержанием в крови липопротеидов и здоровьем человека. Люди, у которых имелось повышенное содержание ЛПНП, имели атеросклеротические изменения в сосудах. И наоборот, для тех, у кого в крови преобладали ЛПВП, был характерен здоровый организм. Все дело в том, что низкомолекулярные транспортеры склонны к выпадению осадка холестерина, который оседает на стенках сосудов. Поэтому его называют «плохим». С другой стороны, высокомолекулярные соединения, имея большую растворимость, не являются атерогенными, поэтому их называют «хорошими».

Содержание в крови. Показатели уровня нормы

Учитывая важную биологическую роль холестерина, его уровень в крови должен быть в пределах допустимых значений:

  • у женщин эта норма варьируется от 1,92 до 4,51 ммоль/л.
  • у мужчин – от 2,25 до 4,82 ммоль/л.

При этом уровень холестерина ЛПНП должен быть меньше 3-3,35 ммоль/л, ЛПВП – больше 1 ммоль/л, триглицеридов – 1 ммоль/л. Считается хорошим показателем, если количество липопротеидов высокой плотности составляет 20% от общего числа холестерина. Отклонения как в большую, так и в меньшую сторону говорят о нарушениях здоровья и требуют дополнительного обследования.

Причины увеличения уровня холестерина в крови

Повышение содержания «плохого» холестерина в крови называется гиперхолестеринемия. Она увеличивает риск сердечно-сосудистых заболеваний. Говоря о причинах увеличения количества холестерина в крови, можно выделить несколько:

  • генетические изменения наследственного характера;
  • нарушение функций и активности печени – главного производителя липофильного спирта;
  • гормональные изменения;
  • частые стрессы;
  • неправильное питание (употребление жирной пищи животного происхождения);
  • нарушение метаболизма (патология органов пищеварения);
  • курение;
  • малоподвижный образ жизни.

Опасность избытка холестерина в организме

Гиперхолестеринемия способствует развитию атеросклероза (образование на стенках сосудов склеротических бляшек), ишемической болезни сердца, диабета, образованию камней в желчном пузыре. Таким образом, важная биологическая роль и опасность изменения уровня холестерина в крови отражаются в патологических изменениях здоровья человека.

Контроль

Чтобы избежать неприятных последствий повышения уровня «плохого» холестерина, необходимо предотвратить рост ЛПНП и ЛПОНП.

Сделать это может каждый, необходимо:

  • снизить потребление транс-жиров;
  • увеличить в рационе количество фруктов и овощей;
  • повысить физическую активность;
  • исключить курение;

При соблюдении этих правил риск повышения холестерина в крови снижается в несколько раз.

Пути снижения

Выводы об уровне холестерина в крови и необходимости его снижения делаются медицинскими специалистами на основании результатов анализов. Заниматься самолечением в этом случае может быть опасно.

При стабильно повышенном холестерине для его снижения применяются преимущественно консервативные методы:

  • Применение медицинских препаратов (статинов).
  • Соблюдение здорового образа жизни (правильное питание, диета, физическая активность, отказ от курения, качественный и регулярный отдых).

Стоит отметить в заключении: строение и биологическая роль холестерина, гиперхолестеринемия и ее последствия подтверждают важность для человека этого вещества и всех процессов, связанных с ним. Поэтому необходимо ответственно относиться к факторам, способным повлиять на качество и количества холестерина в организме.

источник

Роль холестерина, главные поставщики липопротеидов в организм человека

Чтобы понять, что такое холестерин, и каково его воздействие на организм, нужно с ним познакомиться поближе. В наше время уже никого не удивишь словом, о значении которого наши предки не имели понятия. У многих холестерин сразу ассоциируется с засорённостью кровеносных сосудов, бляшками, атеросклерозом, инфарктами и инсультами. Но не всё так просто, как может показаться на первый взгляд.

Холестерин присутствует в клеточках, тканях и органах всех живых организмов. Исключение составляют только грибы и безъядерные. Три четверти всего вещества производится нашим организмом, и только четвертая часть поступает с продуктами питания. В его выработке принимают активное участие многие жизненно важные органы.

Полезное воздействие для организма человека

В человеческом организме нет ничего лишнего от рождения. И уж если природа сотворила такое комплексное соединение, значит это оправданное действие и польза от него очень весомая:

  • Он является важным компонентом, при помощи которого осуществляются биохимические процессы: в печени происходит синтез желчных кислот. Они принимают участие в переработке и переваривании жирной пищи.
  • Невероятно важная роль холестерина в укреплении клеточных мембран любого органа. Как раз холестерин обеспечивает их прочность, жёсткость и эластичность.
  • В женском организме из него синтезируется эстрадиол – половой гормон, отвечающий за репродуктивную функцию, вынашивание ребёнка, женское здоровье и красоту. Грудное материнское молоко богато холестерином. В период перед менопаузой не рекомендуется интенсивное сбрасывание веса, так как уровень холестерина будет снижаться вместе с жиром, что повлечёт за собой снижение выработки эстрадиола. В результате – забитые сосуды, ломкие волосы, ногти, хрупкие кости и суставы.
  • Без него не обойдётся синтез витамина D, гормонов надпочечников, половых гормонов.
  • Он является одним из составных элементов клеток как спинного, так и головного мозга.
  • Поддерживает уровень воды в клетках и транспортирует полезные вещества через клеточные мембраны.
Читайте также:  Как сделать лимон с медом от холестерина

Уровень холестерина у здорового человека поддерживается на постоянной величине благодаря обменным процессам организма. При этом так называемый пищевой холестерин поступает с едой, а в организме из жиров и углеводов вырабатывается его основное количество.

Суточная норма холестерина (0,6 г), поступающего с едой, практически не влияет на уровень в крови, но его употребление сверх нормы может неблагоприятно отражаться на лабораторных показателях, особенно при нарушениях обменных процессов в организме.

Вред для сосудов

Если нарушается обмен веществ, количество липопротеидов с низкой плотностью увеличивается, соответственно, уменьшается и число ЛПВП, что в свою очередь приводит к чрезмерному накоплению холестерина в сосудах и формированию атеросклеротических бляшек. Такое явление приводит к стенозу сосудов. Бляшки снижают эластичность сосудистых стенок и, накапливаясь, уменьшают просвет и закупоривают проходимость.

Постепенное разрастание бляшек приводит к образованию тромбов, которые перекрывают поступление крови по жизненно важным магистральным артериям, сосудам и аорте. Такое состояние называется тромбоэмболией, протекает очень тяжело, зачастую требует вмешательства высококвалифицированных хирургов.

Главные поставщики липопротеидов в организм

Неправильное питание провоцирует увеличение показателей холестерина в крови, ухудшение состояния сосудов, их эластичность и проводимость. Повышенную норму содержат свиные и говяжьи субпродукты, копченая колбасная продукция и продукты молочной переработки: масло, сметана, сливки.

Вместо животных жиров нужно использовать больше нерафинированного растительного масла, содержащего лецитин и снижающего уровень плохого холестерина.

Правильное питание – залог долголетия и здоровья

Если употреблять еду с высоким содержанием холестерина в умеренных количествах, она не нанесёт вред здоровому организму и не вызовет серьёзных последствий. Каждый взрослый человек сам решает, каким продуктам отдавать предпочтение.

Всё же не нужно игнорировать рекомендации врачей-диетологов:

  1. Рыба красных сортов и морепродукты;
  2. Нежирная телятина и говядина;
  3. Курица и индейка (без кожи);
  4. Свежевыжатые соки;
  5. Грибы;
  6. Каши и запеканки из круп;
  7. Овощи, фрукты и ягоды.

Холестерину в организме человека принадлежит важная роль в защите клеток и обеспечении жизненно необходимых процессов. Однако уровень его в крови нуждается в постоянном контроле, особенно с возрастом. При его повышении необходимо задуматься о пересмотре питания, соблюдении диеты, смене образа жизни и переоценке ценностей.

источник

Физиологическая роль холестерина

Физиологическая роль холестерина

Холестерин – это достаточно сложное жироподобное органическое соединение с общей формулой С 2 7Н 4 6О, относящееся к группе стеринов. Он появился в процессе эволюции вместе с первыми одноклеточными животными сотни миллионов лет назад как молекулярный компонент их оболочек, обеспечивающий им прочность. Растения, в форме одноклеточных водорослей, возникли значительно раньше, и именно они стали образовывать кислород путем фотосинтеза. Растительные клетки покрыты двумя оболочками. Одна, нежная липидно-белковая, имеет на своей поверхности всевозможные рецепторы для обеспечения обмена веществ. Вторая, наружная, очень прочная, целлюлозная, выполняет чисто механические функции: защищает липидную оболочку и создает тургор, важный для формирования клеточных структур. Клетки животных тканей имеют лишь одну внешнюю оболочку в виде белково-липидной мембраны. Прочность этой мембраны совершенно недостаточна, особенно для тканей с механическими функциями, например мышечных, кожных, пищеварительных, и для «блуждающих» клеток, таких как лимфоциты и эритроциты. Высокую прочность липопротеиновым мембранам животных клеток придают именно частицы холестерина. Молекулы жирных кислот построены в форме ниточек из углерода С – С – С – С=С – С – , которые легко разрываются катализаторами или растяжением. Пептидные связи – C – NH – C – NH – также не имеют высокой прочности и поэтому легко разрываются пептидазами и другими ферментами. Молекула холестерина значительно прочнее на разрыв, так как состоит из связанных между собой парными связями колец. Молекулы холестерина встраиваются между углеводородными цепочками жирных кислот клеточных мембран и создают нечто похожее на кольчугу. При этом они не мешают обмену веществ и изменениям формы клеток, что характерно для лимфоцитов, либо, наоборот, «цементируют» липопротеиновую мембрану в жесткую структуру, как у эритроцитов, имеющих форму вогнутого диска и оболочку, состоящую на 23% из холестерина. Эритроциты имеют максимальную величину поверхности по отношению к массе клетки, что важно для выполнения ими функций по доставке кислорода в ткани. Они протискиваются под давлением через тончайшие капилляры, сталкиваясь при этом с их стенками, и постоянно сталкиваются между собой в артериях под давлением от сокращений сердечной мышцы.

В оболочках клеток печени содержание холестерина составляет около 17%. Миелиновое многослойное покрытие нервных волокон, выполняющее защитные и изоляционные функции, на 22% состоит из холестерина. В составе белого вещества мозга человека содержится 14% холестерина, в составе серого вещества – 6%. Внутриклеточные мембраны, например митохондрий или клеточного ядра, также содержат холестерин, но в еще меньшей пропорции, от 3 до 5%. В процессе эволюции животных холестерин выполнял и другие физиологические функции. Из холестерина в печени образуются желчные кислоты, холановая, холевая, дезоксихолевая и другие, без которых невозможно переваривание жиров в кишечнике. Желчные кислоты – это производные холестерина, к которым присоединена карбоксильная группа, что делает их растворимыми не только в жирах, но и в воде. В половых железах холестерин преобразуется в стероидные гормоны, тестостерон и прогестерон, имеющие близкую к холестерину структуру молекул. В женских яичниках гормон эстроген также образуется из холестерина. В надпочечниках производными холестерина являются гормоны кортизол и альдостерон. Холестерин важен для функций почечных клеток, селезенки и костного мозга. Значительные количества холестерина расходуются на образование эфиров холестерина и изохолестерина, которые в смеси с жирными кислотами и фосфолипидами образуют особое сало, выделяемое сальными железами кожи. Секрет этих желез, количество которых достигает 100 – 400 на квадратный сантиметр кожи, обеспечивает эластичность и водонепроницаемость кожных покровов. Холестерин используется и для жировой смазки волос, шерсти и перьев, обеспечивая термоизоляцию и защиту от воды. Из холестерина образуется витамин D. Список функций холестерина можно было бы продолжить. После белков, нуклеиновых кислот, жиров и углеводов холестерин является пятым наиболее важным компонентом организма животных. Как универсально важное вещество он синтезируется не только в печени, но и во многих других тканях. Однако, так же как в случае с белками, жирами, нуклеиновыми кислотами и углеводами, холестерин может стать и причиной разнообразных патологий. Излишек нуклеиновых кислот, как известно, приводит к подагре, излишек жиров – к ожирению. Нарушения углеводного обмена вызывают диабет. Согласно ряду теорий, доминировавших в физиологии много десятилетий, излишек холестерина в крови является главной причиной атеросклероза.

Данный текст является ознакомительным фрагментом.

источник

Обмен и биологическое значение холестерина

Переваривание и всасывание

Холестерин в организме человека бывает 2 видов: 1) холестерин, поступающий с пищей через ЖКТ и называемый экзогенный и 2) холестерин, синтезируемый из Ац – КоА — эндогенный.

Читайте также:  Яблочный пектин при холестерине

С пищей ежедневно поступает 0,2 – 0,5 г, синтезируется 1 г (почти все клетки за исключением эритроцитов синтезируют холестерин, 80% холестерина синтезируется в печени.

Взаимоотношения экзо и эндогенного холестерина в определенной степени конкурентны – холестерин пищи ингибирует его синтез в печени.

Фонд холестерина, обнаруживаемого в ЖКТ состоит из 3-х частей: пищевого холестерина слизистой кишечника – может быть до 20% и холестерина желчи (холестерин желчи составляет в среднем 2,5 – 3,0г)

Всасывание холестерина происходит в основном в тощей кишке (пищевой холестерин всасывается почти полностью – если в пище его не очень много), холестерин желчи всасывается примерно на 50% — остальное экскретируется.

Всасывание холестерина осуществляется только после эмульгирования эфиров холестерина. Эмульгаторами являются желчные кислоты, моно- и диглицериды и лизолецитины. Холестериды гидролизуются холестеринэстеразой поджелудочной железы.

Пищевой и эндогенный холестерин находится в просвете кишечника в неэстерифицированной форме в составе сложных мицелл (желчные, жирные кислоты, лизолецитин), причем поступают в состав слизистой кишечника не вся мицелла целиком, а ее отдельные фракции. Сорбцил холестерина из мицелл – пассивный процесс, идущий по градиенту концентрации. Поступивший в клетки слизистой холестерин этерифицируется холестеринэстеразой или АХАТ (у человека это в основном олеиновая кислота). Из клеток слизистой кишечника холестерин поступает в лимфу в составе АОНП и ХМ, из них он переходит в ЛНП и ЛВП. В лимфе и крови 60-80% всего холестерина находится в этерифицированном виде.

Процесс всасывания холестерина из кишечника зависит от состава пищи: жиры и углеводы способствуют его всасыванию, растительные стероиды (структурные аналоги) блокируют этот процесс. Большое значение принадлежит желчным кислотам (все функции активируют – улучшают эмульгирование, всасывание). Отсюда значение лекарственных веществ, блокирующих всасывание желчных кислот.

Резкое повышение холестерина в пище ( до 1,5 г ежедневно) может сопровождаться некоторой гиперхолестеринемией у здоровых людей.

Биосинтез холестерина

Клетки печени синтезируют 80% всего холестерина, примерно 10% холестерина синтезируется в слизистой кишечника. Холестерин синтезируется не только для себя, но и на «экспорт».

Митохондрии являются держателем субстрата для синтеза холестерина. Ацетил-КоА выходит в виде цитрата и ацетоацета.

Синтез холестерина идет в цитоплазме и включает 4 стадии.

2 стадия – образование сквалена (30 атом С)

Эта стадия (как и 1) начинается в водной фазе клетки, а заканчивается в мембране эндоплазматического ретикулума образованием водо-нерастворимого сквалена.

Затрачивается 6 молей мевалоновой кислоты, 18 АТФ, НАДФ НН с образованием цепочечной структуры из 30 С – сквалена.

3 стадия – циклизация сквалена в ланостерин.

4 стадия – превращение ланостерина в холестерин.

Холестерин – циклический ненасыщенный спирт. Содержит ядро циклопентан-пергидрофенантрена.

Регуляция биосинтеза холестерина

При высоком содержании холестерина, он угнетает активность фермента -гидрокси--метилурацил-КоА-редуктазы и синтез холестерина тормозится на стадии образования мевалоновой кислоты – это первая специфическая стадия синтеза. -гидрокси--метилурацил-КоА, не пошедший на синтез холестерина может пойти на синтез кетоновых тел. Это регуляция по типу обраьной отрицательной связи.

Транспорт холестерина

В плазме крови здоровых людей содержится 0,8 – 1,5 г/л ЛОНП, 3,2 – 4,5 г/л ЛНП и 1,3 – 4,2 г/л ЛВП.

Липидный компонент практически всех ЛП представлен наружной оболочкой, которая образована монослоем ФЛ и холестерина и внутренним гидрофобным ядром, состоящим из ТГ и холестеридов. Кроме липидов ЛП содержат белок – аполипопротеиды А, В или С. Свободный холестерин, находящийся на поверхности ЛП, легко обменивается между частицами: меченый холестерин, введенный в плазму в составе одной группы ЛП, быстро распределяется между всеми группами.

ХМ формируются в эпителиальных клетках кишечника, ЛОНП и ЛВП независимо друг от друга образуются в гепатоцитах.

ЛП обмениваются своим холестерином с мембранами клеток, особенно интенсивный обмен идет между ЛП и гепатоцитами, на поверхности которых есть рецепторы для ЛПНП. Процесс переноса холестерина в гепатоциты требует энергии.

Холестерин
Экзогенный Эндогенный
Холестерин ЖКТ Пищевой
Холестерин слизистой кишечника
Холестерин желчи

Судьба холестерина в клетке

1. Связывание ЛНП с рецепторами фибробластов, гепатоцитов и др. клеток. На поверхности фибробласта содержится 7500 – 15000 рецепторов, чувствительных к холестерину. Рецепторы для ЛНП содержат эндотелиальные клетки, клетки надпочечников, яйцеклетки, разнообразные раковые клетки. Связывая ЛНП, клетки поддерживают определенный уровень этих ЛП в крови.

У всех обследованных здоровых людей интернализация ЛНП неизбежно сопровождается и связыванием с рецепторами клеток. Связывание и интернализация ЛНП обеспечивается одним и тем же белком, входящим в состав рецепторов ЛНП. В фибробластах больных с семейной гиперхолестеринемией, дефицитных по рецепторам ЛНП интернализация их редко угнетается.

2. ЛНП с рецептором подвергается эндоцитозу и включается в лизосомы. Там ЛНП (аполипопротеиды, холестериды) распадаются. Хлороквин – ингибитор лизосомального гидролиза подавляет эти процессы.

3. Появление в клетках свободного холестерина ингибирует ОМГ-КоА-редуктазу снижает эндогенный синтез холестерина. При концентрации ЛНП > 50 мкг/мл синтез холестерина в фибробластах подавляется полностью. Инкубация лимфоцитов 2-3 мин с сывороткой, освобожденной от ЛНП, увеличивает скорость синтеза холестерина в 5-15 раз. При добавлении ЛНП к лимфоцитам синтез холестерина замедляется. У больных с гомозиготной семейной гиперхолестеринемией снижения синтеза холестерина в клетках не происходит.

4. В клетках, способных превращать холестерин в другие стероиды ЛНП стимулирует синтез этих стероидов. Например, в клетках коры надпочечников 75% прегненалона образуется из холестерина, поступающего в составе ЛНП.

5. Свободный холестерин увеличивает активность ацетил-КоА- олестерилацилтрансферазы (АХАТ), приводя к ускоренной реэтерификации холестерина с образованием в основном олеата. Последний иногда накапливается в клетках в виде включений. Вероятно биологический смысл этого процесса заключается в борьбе с накоплением свободного холестерина.

6. Свободный холестерин снижает биосинтез рецептора ЛНП, который тормозит захват ЛНП клеткой и тем самым защищает ее от перегрузки холестерином.

7. Накопленный холестерин проникает в фосфолипидный бислой цитоплазматической мембраны. Из мембраны холестерин может перейти в ЛВП, циркулирующие с кровью.

Превращение холестерина в организме

То внимание, которое ранее уделяли метаболизму холестерина при обсуждении его роли в организме явно преувеличено. На первое место в настоящее время выдвинута структурная роль холестерина в биомембранах.

Внеклеточная среда (кровь) Плазматическая мембрана Клетка
Транспортная форма холестерина Структурный холестерин Метаболически активный холестерин
ЛП-холестерин в основном эфиры холестерина. Холестерин эритроцитарной мембраны – свободный Неэстерифицированный холестерин ЛП – холестерин (эстерифицированный холестерин)

Внутриклеточно переносится в основном свободный холестерин. Эфиры холестерина внутриклеточно переносятся с очень низкой скоростью только с помощью специальных белков переносчиков или вообще не переносятся.

Эстерификация холестерина

Повышает неполярность молекулы. Этот процесс происходит как вне так и внутриклеточно, он всегда направлен на то, чтобы убрать молекулы холестерина с границы раздела липид / вода вглубь липопротеидной частицы. Таким путем происходит транспортирование или активация холестерина.

Внеклеточная эстерификация холестерина катализируется ферментом лецитинхолестеринацетилтрансферазой (ЛХАТ).

Лецитин + холестерин лизолецин + холестерид

В основном переносится линолевая кислота. Ферментативная активность ЛХАТ связана преимущественно с ЛВП. Активатором ЛХАТ является апо-А-I. Образующийся в результате реакции эфир холестерина погружается внутрь ЛВП. При этом концентрация свободного холестерина на поверхности ЛВП снижается и таким образом поверхность подготавливается для поступления новой порции свободного холестерина, который ЛВП способен снимать с поверхности плазматической мембраны клеток в том числе и эритроцитов. Таким образом ЛВП совместно с ЛХАТ функционирует как своеобразная «ловушка» холестерина.

Из ЛВП эфиры холестерина переносятся в ЛОНП, а из последних в ЛНП. ЛНП синтезируются в печени и там же катаболизируют. ЛВП приносят холестерин в виде эфиров в печень, а из печени удаляются в виде желчных кислот. У больных с наследственным дефектом ЛХАТ в плазме много свободного холестерина. У больных с поражением печени, как правило, наблюдается низкая активность ЛХАТ и высокий уровень свободного холестерина в плазме крови.

Читайте также:  Рецепты народной медицины для снижения холестерина в крови

Таким образом, ЛВП и ЛХАТ представляют собой единую систему транспорта холестерина от плазматических мембран клеток различных органов в виде его эфиров в печень.

Внутриклеточно холестерин эстерифицируется в реакции катализируемой ацил-КоА-холестеринацетилтрансферазой (АХАТ).

Ацил-КоА + холестерин холестрид + HSKoA

Обогащение мембран холестерином активирует АХАТ.

В результате этого ускорение поступления или синтеза холестерина сопровождается ускорением его эстерификации. У человека в эстерификации холестерина чаще всего участвует линолевая кислота.

Эстерификацию холестерина в клетке следует рассматривать как реакция сопровождающуюся накоплением в ней стероида. В печени эфиры холестерина после гидролиза используются для синтеза желчных кислот, а в надпочечниках – стероидных гормонов.

Т.о. ЛХАТ разгружает от холестерина плазматические мембраны, а АХАТ – внутриклеточные. Эти ферменты не удаляют холестерин из клеток организма, а переводят его из одной формы в другую, поэтому роль ферментов эстерификации и гидролиза эфиров холестерина в развитии патологических процессов не следует преувеличивать.

Окисление холестерина.

Единственным процессом, необратимо удаляющим холестерин из мембран и ЛП является окисление. Оксигеназные системы обнаружены в гепатоцитах и клетках органов, синтезирующих стероидные гормоны (кора надпочечников, семенники, яичники, плацента).

Существуют 2 пути окислительного превращения холестерина в организме: один из них приводит к образованию желчных кислот, а другой к биосинтезу стероидных гормонов.

На образование желчных кислот расходуется 60-80% всего ежедневно образующегося холестерина, к то время как на стероидогенез – 2-4%.

Окислительное превращение холестерина в обеих реакциях протекает по многоступенчатому пути и осуществляется ферментной системой, содержащей различные изоформы цитохрома Р450. Характерной чертой окислительных превращений холестерина в организме является то, что его циклопентанпергидрофенантреновое кольцо не расщепляется и выводится из организма в неизменном виде. В противоположность этому боковая цепь легко отщепляется и метаболизирует.

Окисление холестерина в желчные кислоты служит основным путем выведения этой гидрофобной молекулы. Реакция окисления холестерина является частным случаем окисления гидрофобных соединений, т.е. процесса лежащего в основе детоксифицирующей функции печени.

Неполярная молекула в пространстве мембраны

окисление в монооксидазных системах печени и других органов

Полярная молекула в водном пространстве

клетки

Этерификация конъюгация связанные белки

Моноокисдазная система.

Содержит цитохром Р450 способный активировать молекулярный кислород (при участии НАДФН) и использует один из его атомов для окисления органических веществ, а второй для образования воды.

С27Н45ОН + НАДФН + Н + + О2 С27Н44(ОН)2 + НАДФ + Н2О

Лимитирующим является первый этап реакции (гидроксилирования в положении 7).

В печени из холестерина синтезируются первичные желчные кислоты (путь окисления холестерина). В просвете кишечника из них образуются вторичные желчные кислоты (под влиянием ферментативных систем микроорганизмов).

Первичными желчными кислотами являются холевая и дезоксихолевая. Здесь же они эстерифицируются глицином или таурином, превращаются в соответствующие соли и в таком виде секретируются в желчь.

Вторичные желчные кислоты возвращаются в печень. Этот цикл называется энтерогепатической циркуляцией желчных кислот обычно каждая молекула совершает в сутки 8-10 оборотов.

Уменьшение поступления желчных кислот в печень в результате дренирования желчного кровотока или применения ионообменных смол стимулирует биосинтез желчных кислот и 7— гидроксилазу. Введение в диету желчных кислот, наоборот, угнетает желчегенез и ингибирует активность фермента.

Под действием холестериновой диеты желчегенез у собак увеличивается в 3 – 5 раз, у кроликов и морских свинок такого увеличения не наблюдается. У больных атеросклерозом отмечено снижение скорости окисления холестерина печени. Вероятно это снижение является патологическим звеном развития атеросклероза.

Другой путь окисления холестерина приводит к образованию стероидных гормонов несмотря на то, что в количественном отношении он составляет всего несколько процентов обменивающегося холестерина. Это очень важный путь его использования. Холестерин является основным предшественником всех стероидных гормонов в надпочечниках, яичниках, семенниках и плаценте.

Цепь биосинтеза включает множество гидроксилазных реакций, катализируемых изоформами цитохрома Р450. Скорость процесса лимитируется его первой реакцией расщепления боковой цепи. Несмотря на, небольшой количественный вклад стероидогенеза в валовое окисление холестерина угнетение этого процесса в пожилом возрасте длящемся долгие годы может постепенно приводить к накоплению холестерина в организме и развитию атеросклероза.

В коже из дегидрированного холестерина под действием УФ-лучей образуется витамин D3, затем он транспортируется в печень.

В неизменном виде холестерин секретируется желчью. В желчи его содержание доходит до 4 г/л . Холестерин желчи это 1/3 холестерина кала, 2/3 его составляет не всосавшийся холестерин пищи.

Метаболизм кетоновых тел.

Ацетил-КоА, образовавшийся при окислении жирных кислот, сгорает в цикле Кребса или используется для синтеза кетоновых тел. К кетоновым телам относятся: ацетоацетат, -окусибутират, ацетон.

Кетоновые тела синтезируются в печени из ацетил-КоА.

Холестерин в патологии.

I. Холестериноз – изменения содержания холестерина в организме.

1. Не осложненный холестериноз – (физиологическое старение, старость, естественная смерть) проявляется накоплением холестерина в плазматических мембранах клеток в связи с уменьшением синтеза стероидных гормонов (стероидогенеза).

2. Осложненный – атеросклероз в форме ишемической болезни сердца (инфаркт миокарда), ишемия мозга (инсульт, тромбоз), ишемия конечностей, ишемии органов и тканей, связанный с уменьшением желчегенеза.

II. Изменения содержания холестерина в плазме крови.

1. Семейная гиперхолестеринэмия – обусловлена дефектом рецепторов для ЛНП. В результате холестерин не поступает в клетки и накапливается в крови. Рецепторы по химической природе являются белками. В результате развивается ранний атеросклероз.

III. Накопление холестерина в отдельных органах и тканях.

Болезнь Вольмана – первичный семейный ксантоматоз – накопление эфиров холестерина и триглицеридов во всех органах и тканях, причина дефицит лизосомальной холестеринэстеразы. Ранняя смерть.

Семейная гиперхолестенинэмия или -липопротеинэмия. Нарушается поглощение ЛНП клетками, повышается концентрация ЛНП, а также холестерина. При -липопротеинэмии наблюдается отложение холестерина в тканях, в частности в коже (ксантомы) и в стенках артерий. Отложение холестерина в стенках артерий главное биохимическое проявление атеросклероза.

Вероятность заболевания атеросклерозом тем выше, чем больше отношение концентраций ЛНП и ЛВП в крови (ЛНП снабжает клетки холестерином, ЛВП удаляет из них избыток холестерина). Холестерин образует в стенках сосудов бляшки. Бляшки могут изъязвляться и язвы зарастают соединительной тканью (образуется рубец), в которую откладываются соли кальция. Стенки сосудов деформируются, становятся жесткими, нарушается моторика сосудов, суживается просвет вплоть до закупорки.

Гиперхолестеринемия – главная причина отложения холестерина в артериях. Но важное значение имеют также первичные повреждения стенок сосудов. Повреждения эндотелия могут возникать в следствие гипертонии, воспалительных процессов.

В области повреждения эндотелия в стенку сосудов проникают компоненты крови, в том числе липопротеиды, которые поглощаются макрофагами. Мышечные клетки сосудов начинают размножаться и тоже фагоцитировать липопротеиды. Ферменты лизосом разрушают липопротеиды, кроме холестерина. Холестерин накапливается в клетке, клетка гибнет, а холестерин оказывается в межклеточном пространстве и инкапсулируется соединительной тканью – образуется атеросклеротическая бляшка.

Между отложением холестерина в артериях и липопротеидами крови происходит обмен, но при гиперхолестеринемии преобладает поток холестерина в стенки сосудов.

Методы профилактики и лечения атеросклероза направлены на уменьшение гиперхолестеринемии. Для этого применяют малохолестериновую диету, лекарства увеличивающие эксткрецию холестерина или ингибирующие его синтез, прямое удаление холестерина из крови методом гемодиффузии.

Холестирамин связывает желчные кислоты и исключает их из кишечно-печеночного кровобращения, что приводит к усилению окисления холестерина в желчные кислоты.

Не нашли то, что искали? Воспользуйтесь поиском:

источник